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Power Analysis.A Monte Carlo simulation power analysis was used
to determine appropriate participant numbers for rating data across
studies 1–3. This power analysis targeted the most central planned
hypothesis test: whether the average correlation between each
participant’s transitions ratings and the group-level experienced
transitions was greater than 0. On each iteration of the simulation,
bivariate normal N(0, 1) data were generated based on a given
population-level effect size (rs = 0.1, 0.3), corresponding to small
and medium correlations between rated and experienced transi-
tional probabilities. To be maximally conservative, data were sim-
ulated with respect to the study with the smallest number of states
(18, in study 3) yielding 324 observations of each variable. Simu-
lated data for individual participants were generated by adding
additional random normal noise (independent and identically dis-
tributed) to one of these vectors for Ns ranging from 20 to 100 in
increments of 5. The SD of the added noise was set to produce
mean interrater reliabilities of 0.1 and 0.3. Each simulated partic-
ipant’s data were converted to a discrete uniform distribution U(0,
100) to approximate actual ratings, and then Spearman-correlated
with the simulated transitions odds from the earlier bivariate
normal distribution. Resulting correlation coefficients were line-
arized using Fisher’s r-to-z transformation and entered into a one-
sample t test to determine whether they were significantly greater
than 0 at the α = 0.05 level. We used t tests in the power analysis,
rather than the bootstrapping adopted with the actual data, be-
cause of the computational efficiency of the former relative to the
latter. This process was repeated for 5,000 iterations at each
combination of effect size, sample size, interrater reliability.
The pooled results indicated that the design in question was

intrinsically quite well-powered, because of the number of ratings
each participant provided. With as few as 20 participants (the
smallest sample considered), a combination of moderate effect size
(0.3) and moderate interrater correlation (0.3) guaranteed ∼100%
power. As expected, decreasing either the effect size or the inter-
rater reliability diminished power, with a superadditive effect of
decreasing both simultaneously. The simulation indicated that with
an effect size of r = 0.1 and a mean interrater of r = 0.3, 30 par-
ticipants would provide 80% power. An effect size of r = 0.3 with a
mean interrater of r = 0.1 would require 35 participants to provide
80% power. If both the effect size and reliability were small (0.1),
then increasing power would be highly inefficient: 35 participants
would provide 32% power, but even 100 participants would only
yield 47% power. These results suggested that a sample size as low
as n = 35 would provide acceptable power, but to improve our
estimates of effect sizes we targeted a sample twofold larger: n =
70, after exclusions. This sample size was estimated to provide
nearly 100% power if both the interrater correlation and the ac-
curacy effect size were moderate (0.3), 98% power if the interrater
correlation was small and the effect size was moderate, 88% power
if the interrater correlation was moderate and the effect size was
small, and 40% power if both were small. Moreover, these esti-
mates were based on testing only 18 states, consistent with study
3 but conservative for studies 1 and 2.
An additional simulation-based power analysis was conducted for

study 5. This power analysis was targeted at one of the key goals of
this study: determining whether transitional probability ratings had
incremental validity in predicting ground-truth positions over and
above similarity ratings. The simulation paralleled the actual
analysis, although simplifying measures were taken for computa-
tional tractability: t tests rather than bootstrapping were used to
assess statistical significance, simulated responses were drawn from

a normal distribution, and Pearson rather than Spearman correla-
tions were used. We fixed the correlation between (group-
averaged) simulated transition ratings and simulated ground-truth
transitional probabilities to r = 0.7, based on the results of studies
1–3. To be highly conservative with respect to the incremental value
of transition ratings, we fixed the correlation between similarity
ratings and ground-truth transitional probabilities to r = 0.69, and
the correlation between similarity ratings and transition ratings to
0.99. The reliabilities from studies 1–3 were used to determine the
signal-to-noise ratio for adding random variance to simulated in-
dividual participants. On each iteration of the simulation, we cal-
culated whether the average partial correlation between individual
participant transition ratings and ground truth (accounting for
group-averaged similarity ratings) was greater than 0. We found
that a sample size of 150 would be sufficient to provide 97% power
at α = 0.05, even under these conservative assumptions.

Manipulation Check. A covert attention check was included in the
rating paradigm for studies 1–4: a radio button item in the middle of
the demographic posttest, which appeared to ask about United
States nationality, but actually instructed participants not to re-
spond. Although it was initially our intention to use this as an ex-
clusion criterion, this check proved more difficult for participants
than we anticipated, eliciting very high failure rates (42%, 32%, and
49% of otherwise included participants in studies 1–3). Further-
more, we found that the average interrater reliabilities were nearly
numerically identical regardless of whether participants who com-
pleted this attention check were excluded, suggesting that this
check was not related to data quality. Note that this reliability check
is not directly related to our hypothesis test, and thus does not bias
results. As a result of these indications of the dubious validity of the
manipulation check, we retained all participants in the analyzed
samples. We subsequently dropped this check in study 5.

Frequency-Normalizing Experienced Transition Matrices. Raw tran-
sitional probability matrices, derived from the experience-sampling
data in studies 1–3, were normalized by frequency expectations.
Frequency-based expectations for each cell in the transition matrix
were calculated by summing the occurrences of each emotion and
then multiplying the resulting vector by its transpose. The resulting
matrix was divided by its sum and then divided into the transi-
tional probability matrix (also sum-normalized) elementwise.
Frequency normalization of the experienced transitions was

undertaken for two reasons. First, without such normalization, the
frequencies would likely dominate other sources of variance in the
experienced transition odds matrix. This would have make it dif-
ficult to determine whether any observed accuracy resulted from
meaningful mental models of emotional transitions per se, or just
knowledge of the frequencies. Second, the common tendency to-
ward base-rate neglect led us to anticipate that participants would
make relative judgments of transition likelihoods that ignored the
global frequencies of each emotion. Failing to normalize for fre-
quencies would thus have unnecessarily contaminated accuracy
estimates with a known source of cognitive bias.

Experience Project Transitional Probabilities. The transitional proba-
bilities that were provided to us were calculated in earlier work (21)
by applying an exponential decay model to 2 million mood reports
on the website. Thus, all states subsequent to a given emotion were
considered, but down-weighted exponentially based on their tem-
poral distance to the emotion report in question. The coefficient of
this exponential model was set such that reports “t” days after the
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initial report would matter half as much as reports “t − 1” days
after that report. Thus, the transitional probabilities in study 5 in-
corporate the time intervals between reports in a relatively natu-
ralistic manner.
The transitional probabilities we were provided were normalized

with respect to the state first experienced, but not with respect to the
endpoint of the transition. Given that the transitional probabilities
were approximately distributed according to a power law (and thus
scale-free), we subtracted 1% from these values, took the mean of
the values between 0 and 1%, and imputed this mean to undefined
cells of the transition matrix. We then normalized with respect to
the transition sums of the endpoint emotions. We included only
pairs of emotions with bidirectional transitions available, leaving a
final set of 456 ground-truth transitions over 57 states.

Frequency Analyses. Participants’ ratings of their own emotional
frequencies in studies 1–3 were subjected to analogous consensus
and accuracy analyses as those conducted with the transitional
probability ratings. The average correlations among participants for
the frequency ratings were rs = 0.19, 0.25, and 0.38, respectively. In
each case, the frequency consensus was less than the transitional
probability consensus, suggesting that participants had more ho-
mogeneous intuitive models than actual emotional experiences.
Item analysis of the intuition and experience sampling emotional
frequencies yielded correlations of ρs = 0.68, 0.70, and 0.75. Indi-
vidual participant ratings correlated with the group-level experi-
ence ρs = 0.31, 0.38, and 0.48, all of which were significantly
significant at P < 0.05 as assessed by percentile bootstrapping.

Out-of-Sample Prediction. To complement the primary inferential
statistical approach in the paper—which relied on nonparametric
null-hypothesis significance testing—we also conducted cross-
validated prediction with respect to the primary accuracy rela-
tions in each study. Fivefold cross-validation was used in each case.
In studies 1–3, we cross-validated with respect to both participants
and emotions. In the former case, we calculated separate simple
regressions predicting each participant in the training set’s re-
sponses with transition log odds from the corresponding experience
sampling study. Using the average regression parameters (slope and
intercept) from these regressions, we then predicted the transition
ratings of participants in the left-out test set. This process was re-
peated iteratively leaving out each of five randomly divided “folds”
in the sample. In the latter case (i.e., cross-validating with respect to
emotions), on each fold we fit a simple regression predicting group-
average transition ratings from experienced transition log odds for
the emotions in the training set. We then predicted group-average
transition ratings for the left-out emotions using the model fit to the
training set. Prediction error for both the participant and emotion
cross-validation was calculated using the formula for RMSE. Also,
in both cases we computed RMSE for a test set that had been
randomly permuted with respect to emotion pairs.
In study 4, we performed a simpler cross-validation of the cor-

relation between self-reported frequencies and rated transition
matrix stationary distribution. In each case, we fit a linear regression
to this relationship using four-fifths of the 60 states, and then
predicted the self-reported frequencies of the left out set using the
corresponding stationary distribution values and the pretrained
model. In study 5, we perform cross-validation with respect to
participant in the manner described for studies 1–3, but did not also
perform emotion cross-validation because of the sparse nature of
the ground-truth transitional probability matrix in this dataset.
Results across all five studies supported the conclusion that

participants’ mental models of emotion transitions were indeed
accurate. In studies 1–3, the RMSEs in the participant-wise cross-
validation were 28.49, 27.36, and 27.58. The corresponding RMSE
values with randomized permuted test sets were 34.02, 30.62, and
34.51. RMSEs in the emotion-wise cross-validation were 18.13,
12.06, and 17.90, with RMSEs in the randomized equivalents of

24.83, 16.62, and 21.93. The RMSE of the correlation in study
4 was 14.17, with a randomized baseline of 21.41. The participant-
wise RMSE in study 5 was 28.92, and the corresponding ran-
domized RMSE was 29.98. Range-normalized versions of these
values are reported in the results section. Note that in every case
RMSE was higher for the randomly permuted test sets then for the
properly order sets in the same analysis, indicating the above-
chance performance of the participants’ predictions.

Dimensional Mediation Analysis. In study 5, we tested whether the
four conceptual dimensions tested in study 4 mediated the re-
lationship between transition ratings and ground truth in study 5.
Two of the three legs of this analysis were completed as described in
the main text: correlating dimension ratings with transitional
probability ratings, and correlating dimension ratings with ground-
truth transitions. The third leg of the mediation examined whether
the accuracy relationship between transition ratings and ground
truth changed as a function of controlling for the dimensions. In this
analysis, we calculated the partial correlation between individual
participant’s transitions ratings and ground-truth transitional
probabilities, controlling for aggregate dimension ratings. We then
recalculated the latter value leaving out each dimension in turn
and assessing the change in partial correlation in each case. Large
increases in accuracy partial correlation as a function of leaving out
a dimension (in conjunction with that dimension correlating with
both ratings and ground truth) was taken as indicative of statistical
mediation of the accuracy. Statistical significance in all portions of
the mediation analysis was calculated via bootstrapping. We ob-
served significant increases in the residual accuracy relationship
when removing valence, social impact, and rationality from the
model, but not human mind [mean change in partial ρs = 0.05,
0.03, 0.01, −0.0008, 95% percentile bootstrap CIs = (0.049, 0.056),
(0.028, 0.033), (0.010, 0.013), (−0.001, −0.0005)]. Together with
the fact that these dimensions are associated with both transition
ratings and ground truth, these results provide evidence that va-
lence, social impact, and rationality each uniquely mediate part of
the accuracy of people’s mental models of emotion transitions.

The Egocentricity of Mental Models. One possible source of inac-
curacy is egocentric bias: participants’ own idiosyncratic emotional
experiences may influence their intuition about others’. We took a
discriminative approach to assessing the effect of egocentrism on
participants’ ratings of transitional probabilities. We correlated
participants’ frequency ratings with each other, and did the same
with participants’ transitional probability ratings. We linearized
both correlation matrices using Fisher’s r-to-z transformation, and
then correlated the lower triangular portion of these two correla-
tion matrices. The statistical significance of this relationship was
assessed by permutation testing. In this case, the rows and columns
of the two correlation matrices were permuted, thus treating the
participant as the level of independent observation. If participants’
idiosyncratic experiences egocentrically biased their mental mod-
els, then participants with similar emotional experiences, as
assessed by their frequency reports, should also have similar
models. We observed a small but reliable impact of idiosyncratic
emotion experiences on mental models, with significant correla-
tions between frequency- and transition-similarity matrices (rs =
0.14, 0.17, 0.18; Ps = 0.0495, 0.016, 0.018) in studies 1–3. This re-
lationship suggests that participants may partially base their models
of others’ emotion transitions on their own emotion transition
experiences.

Co-Occurrence Analysis. For studies 1–3 we calculated emotion co-
occurrence matrices using the same method used to calculate
transitional probability log odds. In each case, we observed large
correlations between these co-occurrence matrices and the cor-
responding transitional probability matrices (ρs = 0.97, 0.90, 0.99).
We also observed high correlations between the co-occurrence
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matrices and group-average transition ratings (ρs = 0.82, 0.72,
0.82). The association between transition ratings and ground truth
appeared to be fully mediated by the variance these variables
shared with the co-occurrence matrices, as the average partial
correlations were not significantly greater than 0 when controlling
for co-occurrence odds. These results suggest that people may
take advantage of the very high ecological correlation between co-
occurrences and transitional probabilities by using their knowl-
edge of the former (which is easier to acquire, requiring only a
single observation) to inform their judgments of the latter. How-
ever, it should be noted that there were considerable gaps between
the proportions of true variance in the group-average mental
models (i.e., their reliabilities), and proportion of variance
explained in these models by the co-occurrences. Thus, the tran-
sition models are not themselves completely explained by
co-occurrence. Indeed, it is mathematically impossible for the co-
occurrences to explain certain features of the mental models, such
as the robust asymmetries in transitional probabilities for partic-
ular pairs of states or variability along the diagonal rating transi-
tional probability matrix.

Analysis of Residuals in the Frequency–Stationary Distribution
Relationship. A substantial correlation between the emotion fre-
quencies participants self-reported in study 4 and the stationary
distribution calculated from their transitions ratings, but it is worth
considering whether any identifiable factors account for the errors in
this model. To this end, we recalculated the correlation as a simple
regression with self-reported frequencies as the dependent variable.
We then calculated the correlations between these residuals and the
four dimensions ofmental state representationwe consider in studies
4 and 5. We found that rationality (r = 0.36) and valence (r = 0.47)
were positively correlated with these residuals, suggesting that the
stationary distribution overpredicted the self-reported frequencies
of affective (vs. cognitive) states and negative states. The dimension
of human mind was negatively correlated with residuals (r = −0.26),
suggesting that uniquely human mental states were also over-
predicted. Social impact expressed a very small correlation (r =
0.03) with residuals, indicating that this dimension was not related
to the accuracy of the stationary distribution.

Exponential Decay Modeling. Following ref. 21, we fit exponential
decay models to the experience-sampling data in studies 1–2 to
explore the characteristic time-scale of the emotions under in-
vestigation. These data were particular well-suited to this analysis,
as the experience-sampling was relatively frequent (every 3 h), and
there were large numbers of within-participant reports (>70), in
comparison with the experience-sampling data in study 3. Within
participant, and for each state in each study, we calculated the time
between an emotion being reported and all subsequent experience-
samples, while also calculating whether the emotion was present at
the time of those subsequent reports. We then fit an exponential
decay model consisting of a binary logistic regression predicting
whether the emotion was present absent at the subsequent time-
point. The single predictor in this model was the natural logarithm
of the time difference between pairs of reports.

All but one emotion was best fit by a negative coefficient, in-
dicative of decay in the probability of recurrence of an emotion over
time (Fig. S4A). The single exception to this rule was the state of
“calm” in study 1. This exception might occur because participants
viewed clam as a neutral baseline state to which they would return
by default, thus leading on an increasing probability of recurrence
over time. The otherwise universal decay of states suggests that
the experience under study cannot be reduced to trait or dispo-
sitional tendencies to report certain states.
Using the logistic regression fits, we were able to calculate the

emotional “half-life” of each state. This value corresponded to the
time it took for the emotion to decay 50% of the time on average,
correcting for its baseline frequency. A one-dimensional optimi-
zation procedure probed the fitted models to find the point that
yielded the appropriate recurrence rates. The resulting half-lives
were almost all less than 1 h, with most in the range of 5 min or
less (Fig. S4B). Given that the experience-sampling rate was only
once every 3 h, these estimates are naturally extrapolations from
the observed data. However, these extrapolations rely only on the
assumption that emotions undergo exponential decay, which is
minimal, plausible, and has precedent in the literature (21). The
short characteristic time-scales of these states suggests that they
are indeed emotions in the typical sense, rather than more tem-
porally extended moods. This result also suggests that very high
density or continuous experience-sampling would likely yield much
high signal-to-noise in studying emotion transitions. The results
observed in the present investigation rely solely on the long tails of
the exponential decay distributions for observable signal, whereas
much of the meaningful variance occurs on a shorter time-scale.

Full Transition Rating Task Instructions. Below we reproduce the full
instructions presented to each participant at the beginning of the
transition rating task. In this case the instructions were taken from
study 5, but very similar instructions were used for each experiment.

People can experience many different emotions. These emotional
states are not static. Instead, they change gradually over time. We are
interested in your thoughts on how one emotion may lead to another.
So for example, if a person feels tired one moment, what are the
chances that they will next feel excited? Or what are the chances that
they will next feel sleepy instead?

In this study you will be presented with pairs of emotions. The first
emotion denotes a person’s current state; the second emotion denotes
an emotional state that person could potentially feel next. You task is
to estimate the likelihood of a person currently feeling the first emotion
subsequently feeling the second emotion. For this example, what is the
chance of a person currently feeling tired next feeling excited?

For example, this transition will be presented as:

Tired → Excited

You will make your rating on a scale from 0 to 100%, where 0%means
that there is zero chance that a person feeling tired will feel excited
next, and where 100% means that a person feeling tired now will
definitely feel excited next.
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Fig. S1. Mental models accurately predict actual emotion transitions in studies 1–3. (A–C) The relationship between the log odds of transitions from three
experience-sampling datasets and corresponding mental models of emotion transitions, averaged across distributions of accuracy of individual participants’
models of emotion transitions from three datasets. Each point corresponds to the transition likelihood between a pair of emotions; dashed lines indicate linear
best fit. (D–F) The distributions of accuracy of individual participants’ models of emotion transitions from three datasets. Solid vertical lines indicate the mean
correlation coefficient, and dashed lines indicate 95% CI calculated via percentile bootstrapping. (G–I) The accuracy of individual participants’mental models at
each step in a random walk through experience-sampled emotion transition matrices. Horizontal dashed lines indicate accuracy expected from random
guessing. Error bars indicate 95% CIs calculated via percentile bootstrapping.
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Fig. S2. Accurate frequency predictions from mental models in study 4. The high correlation between rated mental-state frequencies and the stationary
distribution of the mental model Markov chain provides convergent evidence for the accuracy of people’s mental models.
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Fig. S3. Emotion transition networks in a 4D representational space. The network graphs represent likely transitions (>75%) between mental states in study 4.
Node colors indicate optimal (modularity maximizing) clusters of states that transition to each other. Descriptive labels for multinode clusters are provided for
convenience. Node size indicates how frequently participants experienced the state. The positions of the states reflect where they fall on the psychological
dimensions of valence and social impact (A) or rationality and human mind (B). The effects of the dimensions of rated transitions can be observed in the
relatively sparsity of long-distance links in comparison with short-range links. These effects are also reflected in the spatial clustering of nodes of the same color
cluster in the 4D representational space.
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Fig. S4. Exponential decay and half-lives of emotions. The figures represent statistics of the exponential decay of emotions in the experience-sampling data
from studies 1 (red) and 2 (blue). In A, the characteristic decay curves from binary logistic regressions are plotted for each of the emotions in these two studies.
Overall frequencies were subtracted from the curves to adjust for the different base rates of each emotion. For all but one emotion (calm) the fitted models
indicate decay: that is, decreasing probability of recurrence with time. In B, the boxplots illustrate the distribution of emotional “half-lives” derived from these
exponential decay models. The half-life is the time it takes for the probability of recurrence to drop below 50%, again correcting for base-rates by subtraction.
Outlier emotions with long half-lives are individually labeled.

Table S1. Demographic breakdown and exclusions for samples

Study Rating
Total sample

size (n)
Language
exclusions

Unique
response exclusions

Final sample
size (n) Female (n) Male (n)

Mean
age (y)

Minimum
age (y)

Maximum
age (y)

1 Transitions 80 6 0 74 38 36 35.4 20 66
2 Transitions 82 6 0 76 51 25 32.1 19 59
3 Transitions 109 6 1 102 53 49 34.5 19 69
4 Transitions 337 32 3 302 183 119 38.0 19 73
5 Transitions 152 1 0 151 69 81 36.6 20 70
5 Similarity 154 1 4 149 70 79 36.4 19 70
5 Rationality 44 1 1 42 21 21 38.4 22 66
5 Social impact 46 1 3 42 24 18 38.7 21 67
5 Valence 49 2 2 45 19 26 37.0 21 60
5 Human mind 47 0 4 43 23 20 37.4 22 67
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